

INSTITUTION OUTREACH PROGRAM

Under Institution Academic Social Responsibility (IASR)

A PRACTICAL EXPOSURE FOR GOVERNMENT HIGH SCHOOL STUDENTS

ASSOCIATED DEPARTMENTS

- PHYSICAL SCIENCES
- LIFE SCIENCES
- **CHEMICAL SCIENCES**
- **MATHEMATICS & COMPUTER SCIENCES**

Foreword

HI-GLOW: HANSA SOLUTIONS INDIA PVT. LTD., – GOVERNMENT COLLEGE (AUTONOMOUS), RAJAHMUNDRY LAB ON WHEELS

Government College (Autonomous), Rajahmundry, is a prestigious educational institution in the state of Andhra Pradesh, renowned for its rich legacy and commitment to quality education. Established initially in the year 1853 as Zilla School, the college was upgraded to higher education institution 1873. Since then, it has been instrumental in shaping students into knowledgeable and socially committed intellectuals. Notable alumni of the college include great people like Sri Tanguturi Prakasam Pantulu, the former Chief Minister of the erstwhile Andhra State, educationists Dr. C.R. Reddy, Justice Koka Subbarao and numerous IAS, IFS and other high rank officials across the country.

The college was conferred autonomy status in 2000 and reaccredited with A+ Grade by NAAC in 2020 achieving a CGPA of 3.38/4.00. Further, the institution was recognized as "Çollege with Potential for Excellence" in 2016. The institution continues to uphold its tradition of excellence by fostering an environment of intellectual growth and societal contribution.

The college has a rich tradition of organizing Community Outreach Programmes aimed at fostering knowledge sharing, promoting social responsibility, and strengthening community engagement. As part of this initiative, all the Science Departments of our college have been instrumental in sharing the available laboratory resources with schools and colleges in the vicinity of Rajahmundry. Every year, these departments organize a one week programme to provide hands-on-experience to school children and junior college students.

In recognition of the rich legacy and contributions of our institution towards knowledge-sharing, Sri K.V. Ram Prasad, Chairman of Hansa Solutions India Pvt. Ltd. has extended a generous support to the institution by donating a 36 seat (recliner seats) air-conditioned bus (SML HIROI make) worth 39 lakhs. This donation enables us to further expand our outreach, providing practical exposure through mobile laboratory facilities to the needy educational institutions. Additionally, I am delighted to share that Sri Ram Prasad has contributed ₹70 lakhs towards the establishment of an Innovation and Incubation Hub at our institution, a remarkable boost to our efforts in nurturing creativity and entrepreneurship among students. We are extremely grateful to Sri K.V. Ram Prasad for his huge support for the institution which helps us serve the student community better.

Many students, particularly those in rural and underserved areas, lack access tomodern laboratories and equipment, hindering their ability to engage in experiential learning and explore their full potential. This is precisely why the HI-GLOW: HANSA SOLUTIONS INDIA PVT. LTD. – GOVERNMENT COLLEGE (AUTONOMOUS),

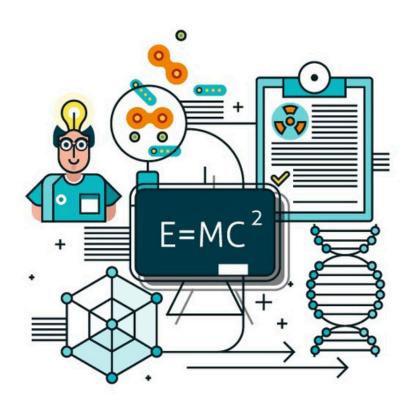
RAJAHMUNDRY LAB ON WHEELS programme was conceived – to give more access to quality education and bridge the gap between the privileged and the underserved. By bringing fully equipped laboratories on wheels to the doorstep of schools and communities, we aim to ignite curiosity, foster creativity, and nurture the next generation of thinkers, innovators, and leaders.

Through HI-GLOW, we envision a future where every student, regardless of their geographical location or socio-economic background, has the opportunity to explore, experiment, and excel in the fields of science, technology, engineering, and mathematics (STEM). We believe that by empowering students with handson learning experiences, we can unlock their full potential, inspire them to pursue careers in STEM, and ultimately contribute to the development of a more informed, innovative, and equitable society.

We are proud to launch the HI-GLOW: HANSA SOLUTIONS INDIA PVT. LTD. – GOVERNMENT COLLEGE (AUTONOMOUS), RAJAHMUNDRY LAB ON WHEELS and look forward to partnering with schools, educators, and communities to make a meaningful difference in the lives of students everywhere.

Dr. Ramachandra R.K. M.sc., Phd.

Principal, Government College (A), Rajahmundry.


DEPARTMENT OF PHYSICS & ELECTRONICS

Founded in 1930, the Department of Physics has a rich history dating back to the

Madras Province of British India. The department offers a comprehensive range of programs, catering to both under graduate and postgraduate students.

- Undergraduate Programs: The department offers four B.Sc. major programs, including one focused on Renewable Energy Management, a job-oriented program.
- Postgraduate Programs: Students can pursue a M.Sc. in Physics, along with research opportunities leading to M.Phil. And Ph.D. degrees. These research programs are affiliated with prestigious universities like Andhra University (Visakhapatnam), Adikavi Nannaya University (Rajamahendravaram), and Jawaharlal Nehru Technological University (Kakinada).
- Research Focus: Established in 2009-10, the Crystal Growth and Nano Science Research Centre fosters a research-centric environment for students and faculty.

Beyond academics, the department prioritizes practical knowledge and skills. Theyboast anadvancedsimulation roboticslab to enhance learningand offervarious certificate courses through their Dual Degree Program. The department practiced LAB TO SCHOOL as best practice for the last 10 years. This programme targeted to improve the experimental skills of school students.

S. No	Name of the Experiment	Apparatus	Outcomes
1	Measuring with Vernier Calipers	Vernier calipers Set of objects to measure (e.g., metal rods, glass tubes, spheres)	Students will learn how to measure objects accurately and understand the significance of the least count in precision instruments.
2	Measurement Using a Screw		
	Gauge	Standard calibration gauge block Assorted samples (thin metal wire, sheet of paper, small metal blocks)	
3	Determination of the Least	Spectrometer with a	Students will
	Count of a Spectrometer	Vernier scale	understand the
	and a Traveling Microscope	Traveling microscope with a Vernier scale	precision of optical instruments.
		Calibration standards (if available)	
4	Simple Pendulum	A sturdy support stand	Students will understand the
		● String of varying lengths (1m, 1.2m, 1.4m)	factors affecting pendulum motion
		● Small weights (such a	nd estimate local
		as metal washers or a small ball)	gravitational acceleration
		Stopwatch or timer	
		Meter stick or measuring tape	
		Protractor for angular measurement device	
5	Determination of Wavelength of LASER Using Diffraction Grating	● Laser (visible wavelength)	Students will explore concept of diffraction and
	<u> </u>	Diffraction grating (with known line spacing)	wave optics

		Screen to observe the diffraction pattern	
		Meter stick or measuring tape	
		Protractor or angle	
		measuring device	
		 Dark room to enhance visibility of the diffraction pattern 	
6	Newton's Law of Cooling	Hot water	Students will
		 Insulated container (to minimize heat loss other than through natural cooling) 	analyze thermal properties and cooling behaviors in liquids.
		Thermometer or digital temperature sensor	
		Stopwatch or timer	
		 Graph paper or spreadsheet software for plotting data 	
7	Determination of the Thickness of a Thin Wire Using Laser Diffraction	 Laser (visible wavelength, such as red or green) 	Students will learn about light diffraction and use
		● Thin wire (the	it for precise
		sample whose thickness is to be determined)	measurements
		● Screen to capture	
		the diffraction pattern	
		 Optical bench or stable platform 	
		Meter stick or measuring tape	
		Micrometer screw gauge (for validation of results)	

8	Determination of the Focal Length of a Convex Lens by Image Method	 Convex lens with a known approximate focal length Optical bench or similar linear track Light source (distant object or candle) Screen (to capture the image formed by the lens) Meter stick or ruler for measurement 	Students will learn to focus light using a lens and apply lens formulas for calculations.
9	Verification of Ohm's Law	 A resistor (100 ohms, for example) A variable power supply A digital multimeter Connecting wires Breadboard (optional, for easier connections) 	Students will observe the linear relationship between voltage and current for a resistor.
10	V-I Characteristics of a Solar Cell	 Solar cell Variable resistor (load) Multimeter or separate voltmeter and ammeter Light source (e.g., halogen lamp) Connecting wires 	Students will gain insights into renewable energy and the efficiency of solar cells.
11	Verification of Basic Logic Gates - AND, OR, NOT Gates	Logic gates kit (containing AND, OR, and NOT gates) Power supply Connecting wires LED indicators or a digital logic probe	Students will understand fundamental digital logic principles.
12	Basic Operation of an Oscilloscope	Oscilloscope Function generator •	Students will understand the usage of the

		•	Connecting cables (BNC cables) Simple electronic components (resistors, capacitors, if required for specific waveform creation)	oscilloscope in measurement of values such as peak-to-peak voltage, frequency, and any other relevant parameters. Students will learn
13	Determination of Unknown Resistance Using a Meter Bridge		Meter bridge (consisting of a 1- meter long wire of uniform cross- section) Unknown resistor Known resistors (range of resistors for substitution) Galvanometer Jockey One-way key Battery or power supply Connecting wires	techniques and resistance measurement.
14	Variation of Magnetic Field with Distance Due to a Current Carrying Circular Coil	•	Circular coil (with known number of turns and radius) Power supply (DC) Ammeter Compass Protractor or angular scale to measure deflection angles Meter stick	Students will connect magnetism principles to practical applications.
15	Measurement of the Focal Length of a Concave Mirror Using the Image Method	•	Concave mirror with S a known diameter and approximate focal length Optical bench or similar linear track	explore image formation and apply formulas to

			Small object (e.g., arrow or candle) Screen to capture the image Meter stick or Vernier caliper for precise measurement	calculate focal lengths.
16	Study of a Compound Pendulum		Rigid bar or rod (compound pendulum)	Students will understand advanced pendulum
			Knife-edge clamps (pivot)	dynamics and derive key physical
			Stopwatch	constants.
			Meter stick	
			Small protractor	
			Weighing scale	

DEPARTMENT OF CHEMISTRY MOBILE LAB

About The Chemistry Department: The Department of Chemistry was established in 1930 under the Madras Province of British India. The Post Graduate Course in CHEMISTRY was introduced in 1971. Recognized research Centre since 2005. Biggest department with 33 faculty members including 13 Doctorate faculties. At present, 03 B.Sc., Major programs are B.Sc. Chemistry (Hons), B.Sc. Organic Chemistry (Hons) and B.Sc. Analytical Chemistry (Hons), 03 M.Sc. (Chemistry) programs are M.Sc. Organic

Chemistry, M.Sc., Analytical Chemistry and M.Sc. Physical Chemistry being offered by the Department. The Department also offered Ph.D programmes.

Unique Features of the programme:

- \checkmark Interactive sessions with highly qualified and professional faculty.
- √ Tomorrow's Laboratories Today!
- ✓ Micro scale Based Practical Experiments.
- ✓ Application of Theory to Practice.
- ✓ Useful for students having the zeal to learn and excel in chemistry.
- ✓ Demonstration and Hands on experience.
- ✓ Innovative science projects included.
- ✓ For Promoting Collaboration attitude and Communication among students

S. No	Name of the Experiment	Apparatus required	Chemicals required	Outcome of the
1.	Introduction of glassware and other equipments are used in laboratory	Beakers, test tubes, watch glass, test tube holders, Conical flasks, Volumetric flasks, burettes, pipettes, Wash bottle, Bunsen burner, tripod stands, burette stands	-	Experiment Students can able to know name and use of different glassware and other equipments used in Laboratory
2.	Solubility: Solubility of some common liquids in water, saturated solution and Supersaturated solution.	Beakers, Test tubes, Glass rods, test tube holders	Vinegar, Lemon juice, mustard oil, coconut oil, kerosene, NaCl, HCl, NaOH.	Students can able to distinguish soluble and insoluble liquids and Understand the concepts of Saturated and Supersaturat ed solutions
3.	Separation of substances: Sedimentation, Decantation, Filtration, Evaporation	Beakers, Bunsen V burners, and tripod stand	Vater, Salt and mud water, Filter paper Epsom salt (patika)	Students can able to learn how to separate components

	A			<u> </u>
	And Condensation			from
	Evaporation And			mixture
	Condensation Acids,			
4.	bases and	Beakers, Test	Litmus papers,	Students are
	Salts: identification of	tubes, Gloss rods,	Phenolphthalein	able to easily
	acids, bases and Salts	test tube	indicator, methyl	identify
	using indicators, PH			
	papers, Litmus paper,	holders, Test	orange, Filter	acids and
		tube stands	papers, turmeric	bases.
	Phenolphthalein		powder, China	
	indicator and some		roses, Beetroot	
	natural indicators		and Cabbage, HCl,	
	turmeric paper and		NaOH, NaCl,	
	China rose solution,		Vinegar, Tamarind,	
	Beetroot and		Lemon Juice, Amla	
	Cabbage juice.		and Unripe Mango	
	Physical and Chemical	D	Ice, water, rusted	C. I.
5.	changes: Melting of	Beakers, Test		Students are
	ice, evaporation of	tubes, Gloss rods,	iron piece,	able to
	water, solidification of	test tube	magnesium	distinguish
	water, determination	holders, Bunsen	ribbon and Copper	physical and
	of Melting point and	burners, and	sulphate and dil	chemical
	Boiling point, rusting	tripod stand	H2SO4	changes of
	of iron and heating of			compounds
	_			and
	magnesium ribbon,			crystallizatio
	Crystallization			l n
	Combustion and			techniques.
	Flame: Combustion			Students
6.	of different	Bunsen burner,	Wood, paper, Iron	can able to
	substances, different	Candle and Fire	nails, kerosene oil	
	Zones of flame of	extinguisher	straw, match stick, u	Inderstand
	Bunsen burner and		Charcoal and glass (ombustible
	use of Fire			and
	extinguisher			NonCombus
				tible
				substances,
				understand
				knowledge
				about
				oxidation,
				reduction
				Zones of
				flame and
				use of Fire
				extinguisher
				-

7.	Physical nature of Matter :Sublimation Evaporation, Volatility ,And Condensation	Glass funnel, China dish, beakers and watch glass Bunsen burners, and tripod stand	NH4Cl, Water, Ethanol and ether, Camphor	Students can able to understand Sublimation and Evaporation techniques
8.	Types of mixtures: types of solutions Concentration of solutions, True solution, Suspension, Precipitation, and Colloidal solution	Beakers, test tubes, Volumetric flasks	NaCl, BaCl2, Sugar, Milk	Students can able to understand Homogeneo us and heterogeneo us solutions, expressing concentratio n of solutions and identify the Suspension and Colloidal solutions Students
9.	Qualitative analysis: a) Identification and confirmatory tests for CI-, Br-, CO2-,NO3, SO2-4 b) Identification tests for Nitrogen	Bunsen burner flame, test tubes, holders, glass rods, watch glass.	Dil.HCl Ca(OH)2 Conc. H2SO4 FeSO4 NH4Cl, AgBr, CaCO3 BaCl2 AgNO3 Ethanol	can able to identify anions
10.	Volumetric analysis: a) Preparation of 1M oxalic acid b) Standardization of NaOH using std. oxalic acid c) Standardization of HCl using std. NaOH	1) 250mL volumetric flask 2) Burette 3) Pipette 4) Conical flask 5) Burette stand 6) Funnel 7) Weighing balance 8) Wash bottle 9) Weighing bottle	1) Distilled water 2) Oxalic acid 3) NaOH 4) HCl 5) Indicators (Phenolphthalein and methyl orange)	Students can able to prepare standard solutions and determine the strength of unknown solutions.

11.	Ball and stick		Students
	Models:		can
	Demonstration of		understand
	structures of simple	Ball and Stick	structures of
	molecules using ball	Models	H2O, NH3,
	and Stick model		CH4, PCI5
			and SF6
12.	Atom, molecule, Ions		Students
	and Names and		can
	symbols of elements,		understand
	ions and Writing		basics of
	formula of Simple		structure of
	compounds		atom and
			writing
			formula of
			compounds
13.	Theories of structure	Charts,	
	of atoms: Thomson's	PowerPoint	
	model of an atom,	presentations	
	Rutherford's model of		
	an atom, Bohr's		
	model of an atom,		
	Particles in Atom,		
	Distribution of		
	electrons in different		
	orbitals, Atomic		
	number and Mass		
	number, Isotopes,		
	isobars.		

Department of Computer Science & Applications

About the Department:

The Department of Computer Science, Government College (A) Rajahmundry is a hub of innovation and education in computational sciences and information technology. Its primary aim is to prepare students for careers in software development, data science, artificial intelligence, cyber security, and other cuttingedge areas of computing. As one of the youngest departments in a college with a 170-year legacy, we take pride in our dynamic approach to education, constantly evolving to meet the demands of the ever-changing digital landscape. With a dedicated team of 8 experienced faculty members and a thriving community of over

1000 ambitious students pursuing Bachelor's degrees and Master's Degrees, the Department of Computer Science and Applications is a beacon of academic excellence. Our students' eagerness to learn, coupled with the expertise of our industry-trained faculty, ensures the cultivation of top-notch professionals sought after by esteemed companies worldwide. International students form a vital part of computer science departments worldwide, bringing diverse perspectives, innovative ideas, and global cultural experiences to academic institutions.

Our state-of-the-art facilities, including four fully air-conditioned computer laboratories equipped with 200 systems and robust computing infrastructure, underscore our commitment to providing cutting-edge resources for learning and innovation. Moreover, as the custodians of software and hardware requirements for the entire college, we play a pivotal role in driving technological advancements across campus.

Objectives of the Program:

The primary objective of this program is to introduce high school students to the fundamentals of Computer Science in a hands-on, practical, and engaging manner, even without a dedicated computer lab facility. Through this program, students will:

- 1 .Understand Basic Computer Science Concepts: Introduce key concepts in computer science such as algorithms, programming, Hardware and problem-solving.
- Develop Problem-Solving Skills: Help students develop critical thinking and logical reasoning through simple coding exercises and algorithmic challenges.
- 3. Introduce Computational Thinking: Promote computational thinking by teaching students how to break down complex problems into smaller, manageable tasks.
- 4. Hands-On Learning: Provide practical experience in using basic tools and software to solve problems, even without advanced technology or resources.
- 5. Create Awareness of Computer Science Applications: Help students understand how computer science is applied in the real world, in everyday life, and in various industries.

6. Boost Interest in Technology: Inspire students to consider pursuing computer science and related fields in further studies.

Overview of Practical Sessions

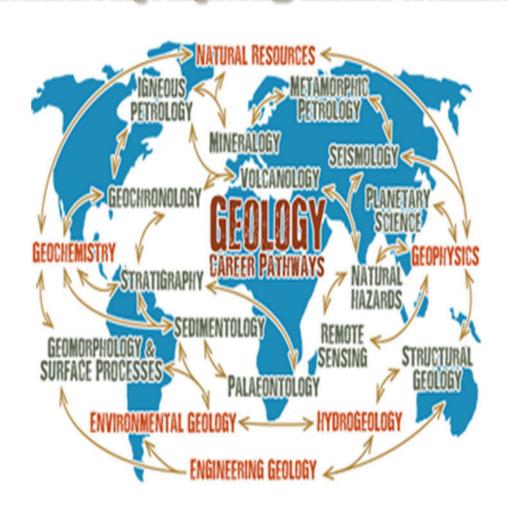
Sl. No. N	lame of the	Tools Required	Applications	Outcomes
	Practical	Pen, Paper,	Algorithm design,	Students will
1	Introduction to Algorithms (Paper-based exercises) Understanding	Whiteboard	Problem-solving	understand how algorithms solve problems step-by-step. Students will
2	Flowcharts	Pen, Paper, Whiteboard	Designing algorithms visually, Flowchart creation	learn to visualize and plan algorithms before coding. Students will understand
3	Binary Numbers and Binary Arithmetic	Pen, Paper, Whiteboard	Basics of computer data representation	how data is stored and processed in binary form. Students will visualize and
4	Basic Sorting Algorithms	Pen, Paper, Whiteboard	Understanding sorting techniques like Bubble Sort, Selection Sort	implement simple sorting algorithms. Students will convert
5	Number Systems and Conversions	Pen, Paper, Whiteboard	Understanding Decimal, Binary, Octal, Hexadecimal systems	numbers between different numeral systems. Students will learn how logic
6	Introduction to Logic Gates and Boolean Algebra	Pen, Paper, Whiteboard, or Printable Logic Gate Cards	Circuit design, Digital logic	gates work and their role in computer systems. Students will identify and describe the
7	Exploring Basic Computer Hardware Components	Whiteboard, Pen, Paper, Printouts of computer parts diagrams (CPU, RAM, HDD, etc.)	Understanding the functions of different hardware components	role of each hardware component in a computer system.

8	Introduction to Cybersecurity and Online Safety	Whiteboard, Pen, Paper, Internet access (optional)	Recognizing the importance of online safety and basic cybersecurity concepts	Students will learn to protect personal information and avoid online threats like malware and identity theft. Students will
9	Exploring Safe Social Media Usage	Internet access (if available), Whiteboard, Pen, Paper	Discussing safe and responsible use of social media platforms	understand the risks of social media and learn how to protect their privacy online. Students will
10	Email Etiquette and Professional Communication	Whiteboard, Pen, Paper, Email templates (optional)	Understanding proper communication through email	learn the rules of professional email etiquette, including structure, tone, and privacy. Students will
וו	Exploring Virtual Labs and Simulations	Computers/Tabl ets with Internet access, Virtual lab software/tools (e.g., PhET simulations, Tinkercad, Scratch, etc.)	Using online simulations to learn and experiment with virtual science and computer science labs	explore virtual labs and simulations for subjects like physics, programming, and electronics, gaining handson experience in a digital environment.

Conclusion:

This program aims to make computer science and technology education accessible, engaging, and practical for high school students, regardless of their school's resources. By bringing hands-on learning experiences directly to the classroom, students explore fundamental concepts of computer science, hardware, cybersecurity, and digital literacy.

Through experiments on hardware components, cyber safety, email etiquette, and virtual labs, students not only gain technical skills but also develop essential knowledge of responsible online behavior. The program fosters curiosity and equips students with


the skills needed to navigate the digital world, preparing them for future opportunities in an increasingly connected society.

Feedback and Recommendations:

To ensure the continued improvement and effectiveness of the College Lab on Wheels program, we request that all participants (students and teachers) provide their feedback. This will help us assess theimpact of the program, identify areas for improvement, and understand the overall experience.

Department of Geology

"GeoDiscovery: Exploring Earth's Wonders"?

About the Department:

Geology is the scientific discipline focused on examining the Earth's composition, structure, and the evolutionary processes since it origin about 4.6 Ga ago in the geological history.

The Department of Geology at Government College (Autonomous) Rajahmundry was established in 1959, marking a significant milestone in the institution's commitment to geological studies. Over the years, the department has played a crucial role in providing quality education and fostering research in the field of geology. With a rich history spanning several decades, it has contributed to the academic and scientific community, producing knowledgeable graduates and contributing to advancements in geological knowledge. The department's longevity underscores its dedication to the pursuit of geological understanding and education, making it a noteworthy part of academic legacy of the Institution

Other than Core Geology employment, students of geology can opt their career in the areas such as Environmental Consulting, Mining and Mineral Exploration, Petroleum and

Regulation, Research and Academia, Natural Hazard Assessment and Mitigation, Remote Geology, Hydrogeology Geotechnical Engineering Environmental Policy Sensing and GIS Analysis, Palaeontology and Archaeology

Geology Experiments: Objectives, Tools, Applications, and Outcomes

Sl. No.	Name of the Practical	Tools Required	Applications	Outcomes
1	Identifying Rocks and Minerals	Rockand mineral samples, Hand lens or magnifying glass, Mohs hardness kit (optional), Streak plates (porcelain tiles)	Students learn toidentify basic rock types (igneous, sedimentary, metamorphic) rand common minerals by observing their physical properties like color, lustre, hardness, and streak	Students will beable to identify different types of rocks and minerals by examining key characteris tics and understand their formation processes.
2	Layers of the Earth Model	Modelling clay or playdough (in different colors), Scissors,	Gain a visual understandin g of Earth's layers (crust,	Students will construct a model of

		Ruler or measuring tape, Plastic transparent container	mantle, outer core, inner core) and their relative sizes and properties	Earth's layers, gaining a clearer understand ing of the structure and compositio n of the planet. Students
3	Soil Profile	Clear glass jar, Soil samples from different locations, Water o	Learn about soil horizons and how organic matter, sand, silt, and clay settle in layers	will observe and understand the structure of different soil layers and the processes involved in soil formation.
4	Volcano Eruption Model	Baking soda, Vinegar, Red food coloring (optional), Plastic bottle, Sand or clay for shaping	Understand volcanic eruptions and the role of pressure and chemical reactions in magma movement	will simulate a volcanic eruption, illustrating the forces and processes that lead to eruptions and the formation of volcanoes.

Conclusion:

The designed Expérientents a hands-on understanding

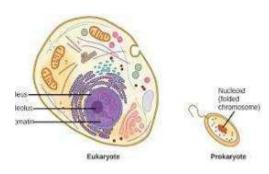
ofEarth's natural processes, structures, and materials. By conducting experiments related to rocks and minerals, soil profiles, the layers of the Earth, and volcanic eruptions, students gain a deeper appreciation of the planet's geological systems. These interactive activities provide valuable learning experiences that allow students to explore geology beyond the textbook, fostering curiosity and a better understanding of Earth's dynamic processes.

The feedback from students and teachers will be essential for improving the program and ensuring that these experiments continue to meet educational objectives, enhancing the learning experience for future participants.

DEPARTMENT OF GEOGRAPHY

MOBILE LAB EXPERIMENTS

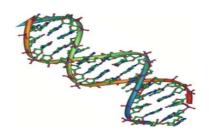
	Name of the	Tools /equipment	Outcome of the
S. No E	xperiment	required	Experiment
1.	Introduction of Latitudes and longitudes, International time scale	Glob,World mapwith latitudes and longitudes	Students are able to know the use of latitudes and longitudes, and to understand the International time scale. Students can able to know the various time scales of various countries
2.	of Topographical maps and	Charts of Conventional signs of topographical maps and topographic maps	Students can able to Understand the Conventional signs of topographical maps and they are able to know the Topographical maps and its Importance Students can able to
3.	Contours – Representation of relief features	Charts of slopes and relief features and Topographical maps	Understand the Contours and representation of relief features and can able to understand the various types of slopes of Landforms


DEPARTMENT OF MATHEMATICS

The department was establishedin1871withUGprograms. The PG program was introduced in 1971. Currently, the department runs two UG programs i.e. B.Sc Honours Mathematics, B.Sc Honours Computational Mathematics with a sanctioned intake of 60 students in each stream. Next, the Department runs one PG program i.e. M.Sc Mathematics with a sanctioned intake of 40 students. The department has 15 faculty members with rich teaching experience.

MOBILE LAB EXPERIMENTS

S. No	Name of the	Tools required	Applications
	Experiment		
7	· ·	A protractor or angle- S	
	with the tangent \wedge	leasuring tool, A	Building
	ratio can help	ruler or measuring	Heights, Designing Roofs,
	visualize and	tape, A calculator.	Land Surveying,
	understand how		Geographic Location,
	it relates to the		Inclined Planes, Geography
	geometry of a		and Meteorology.
	Right triangle.		
2	To explore and	Ruler or measuring Ap	plications in Art and
	identify the	Tape Protractor	Archi-
	Golden Ratio in	(optional) Graph	texture, study of Growth
	various geo-	paper Scissors and	Patterns in Plants, Spirals in
	metric shapes,	paper (optional for	Nature, Stock Market
	and to observe its o	on- strutting	Analysis, Economic Models,
	occurrence in	shapes).	Computer Graphics and
	Nature or art.		Animation.
3	Investigating the T	wo pins (for foci), A	Reflective Properties in
	Circle, Parabolas, P	ece of string, A	Optics, Planetary Orbits,
	an Ellipse	pencil, Paper, A	Reflective Properties in
	Hyperbolas.	straight- edge (ruler)	Optics, Satellite Dishes and
		A, small mirror or a	Parabolic Mirrors, Projectile
		flash - light, Graphing	Motion, Applications in
		Calculators,	Navigation: Hyperbolic
		Geometrical Drawing p	ositioning systems.
		Tools, Conic Section	
		Software.	


Life Sciences

An outreach activity organized with the aim of fostering curiosity in young students and promoting the field of life sciences as an exciting and dynamic area of study. The initiative sought to ignite young minds and encourage them to think critically about the world around them as well as contributing to the promotion of science education.

Objectives

1. To introduce high school students to basic concepts in life sciences, particularly biology, and its relevance to everyday life, create an interactive platform where students could share their knowledge and passion for science.

- 2. To raise awareness on the role of science in addressing global challenges such as environmental conservation and public health. Event Highlights
- <u>1. Interactive Demonstrations</u>: The Life Sciences UG & PG students organize hands-on activities and demonstrations, on simple biology experiments such as the dissection of plant tissues, observation of cells under a microscope, and illustrating DNA Models etc..
- 2. Science Games and Quizzes: Fun and educational science games were organized to reinforce key concepts from the model presentations to challenge the students' knowledge in an engaging and friendly competition format.

Biotechnology proposed activities:

S.no I	lame of the practical/	Apparatus used/	Outcome
	Demonstration	Required	
1.	Demonstration of Salivary	Test tubes	Know about Role of
	amylase activity	Starch	enzymes in
		lodine	Digestion.
2.	Evolution of CO2 during	Airtight Glass	Knows about cellular
	respiration from germinating	bottle	respiration and
	seeds	Beaker	metabolic activity.
		KOH	

		Lime water	
3.	Working Model of DNA	Thin wooden sticks	Know about
		LEDs	monomers in the
			Structure of DNA
4.	Puzzle Game demonstrating	Cardboard	Understands the
	Sex Determination	Pipes	genetic basis of
		Color balls	gender
			determination.
5.	Working Model of Animal cell	Thermocol	Know detailed
		Glass chamber	structure of animal
			cell and its organelles

Microbiology Proposed activities

S.no I	Name of the practical/	Apparatus used/	Outcome
	Demonstration	Required	
1.	Demonstration of Gram staining	Slides Crystal violet Safranin Bacterial culture, Microscope	Know about structure of bacterial cell and differentiation of Gram+ve and -Ve bacteria
2.	Demonstration of onion peel cells	Slides Methylene blue dropper Microscope	Identification of key components of plant cells.
3.	Models of Bacteria and Virus	Thin wooden sticks Thermopolis	Understand the basic structure of Viruses and mechanism of pathogenesis.

<u>Zoology proposed activities:Six Rare Specimens explaining the characteristics of Invertebrates and vertebrates.</u>

S.no l	lame of the practical/	Apparatus used/	Outcome
	Demonstration	Required	
1.	Demonstration of Human	Specimen of 6	Identification of
	embryo	month old Human	structural changes
		embryo	during embryonic
			development.
2.	Demonstration of Reptiles	Specimen of Naja	Identification of
		Naja (Indian cobra)	physical characteristics

			like color, size and Hood marking
3	Demonstration of Actinopterygii of Exocoetus	Specimen of Exocoetus (Flying fish)	Identification of characteristics like elongated pectoral fins and streamlined body.
4	Demonstration of Chondrichthyes of Chordates	Specimen of Pristis (Saw fish)	Identification of distinctive features like saw like rostrum for defense
5	Demonstration of Mollusca - cephalopoda	Specimen of Octopus	Understanding of anatomical features including arms, suckers, mantle etc.,

Botany Proposed activities:

S.no l	lame of the practical/	Apparatus used/	Outcome
	Demonstration	Required	
1.	Demonstration of Osmosis	Beaker	Know the process of
		Potato tubers	water movements in
		Water	plant cells
		Sugar solution	
2.	Demonstration of	Chromatography	Knows about the
	chromatography on	paper	presence of different
	photosynthetic pigments	Solvents	coloured pigments in
		Fresh green leaves	leaves.

DR. RAMACHANDRA R.K. M.SC., PHD

UGC RAMAN PDF (USA), STATE BEST TEACHER AWARDEE - 2018 GOVERNMENT COLLEGE (A), RAJAHMUNDRY

In Collaboration with:

SRI. RAM PRASAD K.V. Chairman

HANSA SOLUTIONS INDIA PVT. LTD., HYDERABAD, INDIA.